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Combination of improved multibondic method and the Wang-Landau method
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We propose a method for Monte Carlo simulation of statistical physical models with discretized energy. The
method is based on several ideas including the cluster algorithm, the multicanonical Monte Carlo method and
its acceleration proposed recently by Wang and Landau. As in the multibondic ensemble method proposed by
Janke and Kappler, the present algorithm performs a random walk in the space of the bond population to yield
the state density as a function of the bond number. A test on the Ising model shows that the number of Monte
Carlo sweeps required of the present method for obtaining the density of state with a given accuracy is
proportional to the system size, whereas it is proportional to the system size squared for other conventional
methods. In addition, the method shows a better performance than the original Wang-Landau method in
measurement of physical quantities.
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[. INTRODUCTION the combination of the multicanonical method and the cluster
algorithm. They took the two-dimension&)-state Potts
The Monte Carlo simulation is one of the most powerful model as an example. They measured the computational time
tools for investigating models in statistical physidd. Al- required for the random walker to traverse the interval be-
though the Metropolis metho@2] and its variations are tween the two peaks in the canonical probability distribution.
available for simulating variety of models, they are not nec-The traverse time in units of Monte Carlo sweeps was found
essarily the best methods when the system of interest hasta be proportional to the number of spihg, whereas it is
strong long-ranged correlation. Essentially two approachegroportional toN* for the ordinary multicanonical method,
have been proposed for overcoming the drawbacks of sucfjhere N is the total number of spins in the system. The
local-updating methods. In one approach, one uses an efylticanonical cluster algorithrfil3] shows the same size
semble entirely different from the ordinary canonical en-dependence as the Janke-Kappler algoritheferred to as
semble with a fixed temperature, whereas in the other ap-jk» in the present paper The comparison between the

proach one extends the original ensemble by introducinganke-kappler algorithm and this algorithm can be found in
auxiliary variables. Ref.[12].

The multicanonical methodi3—5], the broad histogram In this paper, we propose a method based on the JK

method[6], and the flat histogram methdd] belong to the method (or, more generally, the multibondic ensemble

first category. In these methods a random walk in the energynethod and the Wang-Landau acceleration method. In Sec,

space is performed to calculate the state density as a functi p we brieflv review the multibondic ensemble method. In
of the energy. The multicanonical method was applied to the’ y L '
ec. lll, we propose a modification of the Janke-Kappler

Q-state Potts model, for example, and turned out very suc= ) ) .
cessful [3]. Meanwhile, it was realized that the random Method(MJK) to avoid the possible lasting effect of the
walker tends to be blocked by the edge of the already visiteditial graph. Then, in Sec. IV, a combination of the MJK
area. In addition, because of the general feature of randoMith the Wang-Landau method is discussed. We refer to this
walks, it takes a long time to go from one end of the area t¢eombined method as MJKWL. In Sec. V, we demonstrate the
the other. Recently, Wang and Landg] succeeded in re- €fficiency of the MIKWL by comparing it with other meth-
moving these problems by penalizing moving to and stayingds. In particular, it is shown that the MJKWL is better than
at the energy that has been visited many times. The effieach of its ingredients, i.e., the JK method and the WL
ciency of the Wang-Landa(WL) method was also demon- method. In Appendix A, we present a simple and exact rela-
strated in an application to antiferromagne@estate Potts tionship between the density of stdf2OS) as a function of
model on a simple cubic lattid®]. In particular, the method the energy and the DOS as a function of the bond number for
turned out to be powerful in studying the ground state propihe Q-state Potts model in any dimensions.
erties due to the fast diffusion accelerated by the WL Since we are forced to use many abbreviations in the
method. present paper to refer to various methods, it may be conve-
The second category includes various cluster algorithmsient to summarize all of them here:
In cluster algorithms, graph degrees of freedom are intro- (1) JK—The Janke-Kappler method.
duced to extend the original ensemble. In most of their suc- (2) WL—The Wang-Landau method.
cessful applications, clusters of the size of correlation length (3) SWL—The Wang-Landau method with single spin up-
[10,11 are formed and flipped. A cluster algorithm is applied date, i.e., the original Wang-Landau method.
to Q-state Potts model and has proven to be much more (4) MJK—The modified Janke-Kappler method.
efficient[10] than local-updating algorithms. (5) MIKWL—The modified Janke-Kappler method with
Janke and Kapplgi2] proposed the multibondic method, the Wang-Landau acceleration method.
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[l. THE MULTIBONDIC ENSEMBLE METHOD Since initially Q(ny) is unknown, we achieve this adap-

Since our method can be viewed as a derivative of théuvely. The way how we modify the trial weight is described

Janke-Kappler algorithm, we give a brief review of the n the following sections.

. ) . There are several different ways for adjusting the trial
multibondic ensemble method. In the following, we take the . . . )
Q-state Potts model as an example to makegour descriptio\éve'ght' The original JK method is one of them. The detailed

R .description of the JK method can be found in Appendix B
concrete. However, the generalization to other models W'ﬂ%\nd in the original papei2]
discrete energy is straightforward, and we try to describe our 9 pap '

method so that the generalization appears obvious.

The Hamiltonian is given by I1l. MODIFICATION OF THE JANKE-KAPPLER
ALGORITHM
H==32 8y o, oi={1,...Q} As stated in Appendix B, in the original JK algorithm the
an initial graph for each Monte Carlo sweep may have a long

lasting effect upon the subsequent states during the sweep
since the bond update is done only sequentially. In this sec-
tion, we propose a modification of the Janke-Kappler algo-
rithm (MJK) to reduce the possible lasting effect of the initial
graph as much as possible.

We first choose any consistent combination of a state and
a graph as the initial condition. For the initial choice of
V(ny), we choose/(ny)=1 for anyn,.
Z(T)=D Wo(S)=2, Wo(S,G)=2, Vo(G)A(S,G). In each Monte Carlo sweep of the MJK, we choose the

S SG SG number of the bonds to be placed on the whole system before
(1) actually placing them. The numbey, is chosen with the

This is nothing but the well-known Fortuin-Kasteleyn repre-following probability,

sentation[17]. Wy(S) is the weight of stateS, whereas

A(S,G) is a function that takes the value of 1 whénis P[ny[n (s)]oc(np(s))v(n )
compatible toG and takes the value 0 otherwiséqy(G) blTp Ng b’
denotes the weight for grap® defined as

whereJ is the exchange coupling constant gnjd denotes a
nearest neighbor pair. In what follows, we takas the unit
of the energy, and/Kg as the unit of temperature, whekg

is Boltzmann’s constant. We first represent the partition func
tion as a double summation over stagand graphss, fol-
lowing the general framework of the dual algorithd®,16);

Here,ny(S) is the number of “satisfied” pairs in the current

Vo(G)=Vo(np(G), T)=(e"T—1)™(®), stateS i.e.,
whereny(G) is the number of bonds i6, in the case of the
Q-state Potts model. Although the only graph elements are np(S)=E 85.(S).0:(S)
iy

bonds in this case, a graph consists of more than one type of
elements in general applications. Therefore, in more general
terms,ny(G) is a p-dimensional vector variable whoséh and
element is the number of graph elements of the kind
contained in the grapks. By taking the summation oves I _ I!
and G, fixing the fixed number of the bond, the above ex- m/ mi(l—m)!"
pression for the partition function is reduced to
Note that the choice af, is based only on the information of
the current stat& at the beginning of the sweep. As for the
graphG at the beginning of the sweep, we simply delete all
the bonds in it. We then choosg, pairs at random out of
whereNp is the total number of nearest neighbor pairs in then,(S) satisfied ones and place new bonds on them. It is clear
whole system llp=dN=dL¢ for d-dimensional hypercubic that there is no direct influence of the initial graph on the
lattices. Here, Q(ny) is the DOS of the bond number de- final graph. The correlation between them arises only
fined as the number of consistent combinations of graphs aritirough the state that should be compatible to the initial
states such that the graph consistsgbonds; graph. After the placement of thg, bonds, we “flip” all the
clusters of sites with probability one-half where flipping a
. cluster means changing all the variables on it simultaneously.
Q(nb)z{Glnb(%:nb} ES: A(S.G). This completes one Monte Carlo “sweep.” It is easy to show
that this procedure satisfies the extended detailed balance
In the multibondic ensemble method, we replacecondition[16]:
Vo(ny,T) by a free function that we denote By(n,). By
adjusting this function, we try to make the histogram flat as a P(G|S)W(S)=P(S|G)W(G),
function ofny, . In other words\/(ny,) is adjusted so that the
product of Q(ny) and V(ny,) may be independent af,. whereW(G) =2 W(S,G) andW(S,G)=V(G)A(S,G).

Np
Z(T)= 20 Q(ny)Vo(ny, T), 2

Np=
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Another modification should be done in order to make theone, i.e., the inverse of the DOS. On the other hand, if it is
MJK method better than the original JK method. In the JKsmall, the resulting trial weight is reliable while the conver-
method, the histograrhl(n,) is updated by the simple rule, gence tends to be slow. Therefore, the general strategy is to

set this value large initially and make it smaller as the trial
H(np)=H(np) + [Ny ,np(G) ], (3)  weight approaches the correct one.

) ) ] ] _ The value\ is kept constant throughout each set of simu-
every time a part of graph, i.e., a bond on a pair of sites, i§ation and is reduced by some factor at the beginning of the
updated. It means that we updai¢n,) in a sweep as many eyt set of simulation. Wang and Landau suggested 1/2 for
times as the number of bonds. Although the successive valne requction factor. Each set of simulation terminates when
ues ofn, in the same sweep are strongly correlated with eachine histogram of the set satisfies some predetermined condi-
other in the JK algorithm, one can still get statistically morejgn, concerning its flatness. The histogram is reset at the
informative _data by takir_1g all of them into account. It is beginning of a new set while the trial weigh¥(E) is not.
roughly equivalent to adding some smooth functioi@,)  The whole calculation is terminated wherbecomes smaller
at every Monte Carlo sweep, in contrast to adding fanc-  {pan a predetermined value.
tion. _ _ In order to combine the WL method with the MJK method

However, in the MJK methodH(np) is updated only  gescribed in the preceding section, we may simply replace
once in every Monte Carlo sweep, which means that a deltg,e energy space in the original WL method by the bond-
function is added tdd(np,) at each sweep according to the number space. To be more specifi¢(E) is replaced by
the updating rulg3). In order to remove this disadvantage, H(ny), W(E) by V(ny), and S[E,E(S)] by 8[ny,ny(G)].
in the MJKWL method, we add to the histogram the expeCHowever, as for the updating rule v(n,),
tation values of thed function 5[ ny,,ny(S)], rather than the
6 function itself. The resulting updating rule fét(ny) is InV(np)<=In V(nb)—)\NpP[nb|np(S)]

H(np)<=H(np) +NpP[ny|ny(S)]. is the better choice than

Although including a constarii is not relevant, it is added INnV(ny)<=InV(ny) —NS8[Ny,Np(G)]

in order to make the magnitude of the histogram comparable _ _ _
to the one in the JK method. for the same reason as we stated in the preceding section.

We, therefore, use the former updating rule in the MJKWL
IV. COMBINING WITH THE WANG-LANDAU METHOD method for the sample calculation presented below.
It has been known since the first proposal of the multica- V. EFFICIENCY OF THE METHOD
nonical method that the random walker tends to be stuck at . _
the boundary that separates the region visited already from We now discuss the performance of the above-mentioned
the one not visited yet. This difficulty has been removed bymethods. Since the present meth&JKWL) is the combi-
the recent technique proposed by Wang and Lan@u nation of MIK and WL, it should be demonstrated that this

Their method seems to be useful also in accelerating theombination is meaningful, i.e., MJKWL is qualitatively bet-
diffusion of the random walker. ter than both of the two ingredients.

In the WL method, the DOS phagsee the following First, it should be noted that there are several measures of
section of the computation consists of varying number of performance. In the WL method, such as MJKWL and single
consecutive sets of simulation, as is also the case with th&pin updated Wang-Landau metht8\WL), the whole com-
ordinary multicanonical method and its derivatives. How-putation process consists of two phases; the DOS phase and
ever, the important difference lies in the way the trial weightthe measurement phase. In the DOS phase, the computation
is updated. In the conventional multicanonical methods, thés performed mainly for obtaining an estimate of the DOS.
trial weight is updated only at the end of each set of simulaDuring this phase, several sets of simulation are done for the
tions. During each set, the trial weight and, consequently, thadoptive adjustment of the fictitious weiglthe trial weight
transition probability are fixed. In the WL method, on the V(ng) in Sec. Il for the multibondic methods such as JK,
other hand, every time the state of the system is renewed, tH4JK, and MJKWL and the trial weightV(E) in Sec. IV for

trial weight W(E) is updated as the SWLJ. At the end of this phase, some of the physical
quantities, such as the entropy, the energy, and the specific
INW(E)<=InW(E)—-\JS[E,E(S)] (A>0), heat, can be computed with the resulting DOS. For other

quantities, however, some additional simulation should be
whereE(S) is the energy of the current state. The positiveperformed with a fixed trial weight and with the controlling
parametern is introduced to control the magnitude of the parametein set to zero. We call this part the measurement
expelling force imposed on the random walker. If the paramphase.(In the case where the value bffor the last set of
eter is large, the random walker quickly moves out of thesimulation in the DOS phase is negligibly small, a separate
region that it has already visited. In other words, the histo-measurement phase may not be necessary. In such cases, we
gram is forced to be flat by this parameter. However, the veryegard the last set as the measurement phasevhat fol-
presence of this force breaks the detailed balance and, therews, we discuss the computational time required for the
fore, makes the resulting trial weight differ from the correct DOS phase and that for the measurement phase, separately.
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As we see below, the DOS is obtained much faster in thevalker to move out of the already visited region and make
DOS phase of MIKWL than in JK and MJK, while SWL histogram flat. Since this situation is similar to the one-
shows qualitatively the same performance as MIJKWL. Thelimensional self-avoiding walk, a natural guess is that the
difference between MJKWL and SWL can be seen in thehumber of step§.e., the number of local updatingsequired
measurement phase. Namely, MJKWL yields much bettefor the walker to traverse the already visited region is pro-
statistics in the measurement phase than SWL within th@ortional to the size of the region, which@(N). In units of
same number of Monte Carlo sweeps. sweeps, it iSO(N°).

A remark should be placed here concerning the sources of To check if this simple argument is correct, we performed
errors in the two phases. During the DOS phase, the systengimulations for ferromagnetic Ising model on a square lattice
atic error as well as the statistical error is present. The sysising three different methods: MIJKWL, MJK, and JK. For
tematic error is due to the obvious fact that there may be #hese three methods, we set an initial weiyth,)=1 for
region that the random walker has not visited yet. In thedll n,. We measured the number of Monte Carlo sweeps
methods based on the Wang-Landau acceleration, the fatgquired for obtaining the DOS with a roughly fixed preci-
that the controlling parametaris not zero in another source Sion, as a function of system sia¢=L?. It should be re-
of systematic error. Because of this systematic error, the dénarked here that we cannot rigidly fix the target precision of
pendence of the total error on the duration of the simulatiorthe DOS because the termination condition in MIJKWL is
is complicated. On the other hand, in the measurement phasgfined in terms of the flatness of the histogram and the
there are no other sources of errors than the ordinary statigalue of the controlling parametex, not the number of
tical ones. Therefore, the precision of the result in this phas&lonte Carlo sweeps nor the precision of the DOS. There-
is proportional to the inverse of the square root of the numfore, we performed a MJKWL simulation first with some
ber of Monte Carlo sweeps. reasonable choice of the termination condition. Then, we

In what follows, we argue and demonstrate that the methperformed simulations using JK and MJK. The current esti-
ods without the Wang-Landau acceleration, such as JK anghate of the DOS is updated frequently in these simulations
MJK, require the number of Monte Carlo sweeps of the ordeg0 that the simulation can be terminated as soon as the pre-
O(N?) whereas the methods with the Wang-Landau accelcision of the DOS estimate reaches the same as that obtained
eration, such as MJKWL and SWL reunN) to achieve in the MJKWL simulation. The DYECiSiOI’l of the DOS is mea-
the same accuracy in the DOS. sured by the following quantity:

In all the methods discussed here we start with sawhe
hocinitial guess for the DOS. Then, the resulting histogram
has a rather narrow range of distribution. Therefore, in order
to make the histogram flat throughout the whole endryy
bond numberrange, we have to repeat simulations. EveryThe exact DO (®@% js obtained through EqA2) as a
time we start a new set of simulation, we improve the initialfunction of the energy14]. In what follows, the termination
guess for the density of states based upon the outcome of th@ndition for the MIKWL is the same for all the system
last set of simulation. The difficulty arises near the boundarngizes. It turned out that the resulting signal-noise ratio of the
between the two regions; the region that has been visiteDOS, (L), is roughly independent of the system size.
already in the previous simulations and the region that has Our procedure for the MJKWL simulation is as follows.
not. When the random walker in the energy the bond The reduction factoi is divided by 2 when each set of
numbej space hits the boundary during the simulation, itsimulation is terminated. Each set is terminated when the
usually bounces back and, even if it does not, it seldom goesmallestH(n,) becomes greater than 0.8 times the average
far beyond the boundary. Therefore, the width of the visitedvalue ofH(n,). The whole calculation is terminated whin
region increases by only a few steps as a result of the wholgecomes less than 18. This procedure is essentially the
set. It follows that the number of sets of simulation requiredsame as suggested in the original paper by Wang and Landau
for making the histogram flat is proportional to the width of [7] except that we work with the DOS as a function rgf
the energy(or bond numberspace, that isQ(N). In addi-  rather tharE.
tion, each set must be long enough for the walker to traverse For MJK and JK, we perform a number of subsequent sets
the whole previously visited region. Since the width of the of simulations to improve the estimates of the DOS. We start
previously visited region is of the ord€(N) in general and  with a relatively short set and gradually make it longer. The
the typical distance the walker traverses in a single Montgvay we increase the number of sweeps of a set depends upon
Carlo sweep i©(NY?), the number of Monte Carlo sweeps whether the random walker has already visited the whole
required for the walker to traverse the region isbond-number space. if, has not visited the whole, space
O[(N/N*2)?]=0(N). These factors are multiplied to make at the end of théth set, the number of sweeps for thie (
the total number of sweeps required for the whole DOS+ 1)th set is chosen as
phase of the orde®(N?).

In contrast, in methods with Wang and Landau’s accelera- tiy1=10(m;+Np),
tion, the situation described above cannot happen. This is
because the current histogram affects the current weights aneherem; is the number of the already visited valuesngfin
transition probabilities, such that the weights for the fre-theith set. If the above argument is correct, i.e., the random
quently visited positions become smaller. This forces thewvalker moves in the bond-number space as a self-avoiding

Np
EO [INQ(ny) — In Q&Y ).

Np=

«L=N71
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FIG. 1. The total number of Monte Carlo sweeps performed to  FIG. 2. The total number of Monte Carlo sweeps as a function
obtain the same accuracy in the DOS estimate, as a function of thef the system siz&l=L? for ferromagnetic Ising model on a square
system sizeN=L2 for ferromagnetic Ising model on a square lat- lattice. The calculation is performed following Wang and Landau’s
tice. Three methods are examined; the modified Janke-Kappler affiginal procedure. The average is taken over ten independent runs.
gorithm with the Wang-Landau methdJKWL), the modified The upper and lower lines are for references, correspondirtg to
Janke-Kappler algorithniMJK), and the ordinary Janke-Kappler *O(N?) andt=O(N*), respectively.
algorithm(JK). The average is taken over 30 independent runs. The
upper and lower lines are for references, corresponding to To compare the efficiency of MJKWL and SWL in the
«O(N?) andt=O(N?), respectively. measurement phase, we calculate the squared magnetization

M? divided byN? for ferromagnetic Ising model on a square
walker, this choice of;,; should give the walker an enough |attice. We first estimate the DOS in the DOS phase. Using
time to traverse the whole region of preViOUSIy visited Value&his DOS, we then perform 50 independent runs for the mea-
of ny and touch the boundary a few times. Therefore, itsyrement phase using different random number sequence for
should be enough to expand the visited regionnjfhas  each run. Each run consists of N@weeps, and produces
already visited the whole,, space at the end of théh set, g histogram and a set of microcanonical averages of

the number of sweeps for the«1)th set is given by the squared magnetization, as is usually done in any
multicanonical-type method. Based on this information, the
i 1=2t;. canonical average of the squared magnetization at the critical

temperature is computed for each run. Then, we compute the

This choice will provide the walker with enough time to standard deviation of these 50 canonical averages. This stan-
develop appreciably better trial weights than the previouslard deviation is proportional to the statistical error in the
sets. The whole procedure yields the total number of sweepfinal estimate and can be used as a measure of the efficiency
of the orderO(N?) if the above argument is correct. The with which the spin configuration is updated during the
entire process is terminated when the estimd¥dd,) has simulation.
become as good as that obtained with the MJKWL. The result is shown in Fig. 3. As is clear from the figure,

The computation is done for system sizes4, 8, 16, 24, MJIKWL is better than SWL. The difference in the standard
and 32 as all other sample calculations presented below. Thaeviation tends to increase as the system becomes larger.
results are shown in Fig. 1. The average is taken over abouthis is because the spin configuration is updated by clusters
30 independent simulations. We can easily see that MIKWIn MJKWL whereas it is updated by single spins in SWL.
is the best method among the three multibondic methods foFherefore, the configuration is decorrelated much faster in
largerN. It can be also seen that the MJK is better than theMJKWL than in SWL. To be more specific, a random walker
JK. Two lines are drawn in Fig. 1 for references. The lowerin SWL must visit states with very different values of energy
dashed line corresponds to<O(N?!) whereas the upper in order to visit a state with very different value of the mag-
dashed line ta«O(N?) We can see that the MIKWL re-

quires O(N?) sweeps while the MJK and the JK require -3 :
O(N?) sweeps, as expected from the argument. We have also t
confirmed that the relative statistical error in the DOS ob- ; &
tained by MJKWL does not strongly depend on the system i ; i
size. © 4
The performance of SWL, i.e., Wang and Landau’s origi- = AwWL ! }
nal method using single spin flips, is also examined. We set @ MIKWL b
the initial weightW(E) =1 for all E. We measured the total O MJKWL IM }
number of Monte Carlo sweeps as a function of the system 2 ' 7] Ir‘1 N 5 ' 8

size. Again the precision of the resulting estimate of the DOS
does not strongly depend on the system size. The result is F|G. 3. The standard deviation of 50 independent estimates of
shown in Fig. 2. We can see that the SWL requ@éN')  the squared magnetization per unit spin thermally averaged at the
sweeps for large systems. Therefore, it can be concluded thatitical temperaturelT = 2/In(1++/2) for the ferromagnetic Ising
the SWL has the same qualitative performance as thenodel on a square lattice. For each run, NOSweeps are per-
MJKWL in the DOS phase. formed.
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netization, whereas a random walker in MJKWL does not Np
have to because the state can change even without changing Z(x)= E Q(Np)(x—=1)",
the bond number at all. Np=0

The range of the energy isNp<E=<0 and that of the num-
VI. SUMMARY ber of bonds is &n,<Np, whereNp is the total number of
We have proposed a combination of the Janke-KappleP€arest neighbor pairs of spins. Differentiating the above two
algorithm with the Wang-Landau acceleration method, to-duationd times with respect to, we obtain
gether with a modification of the Janke-Kappler algorithm.

The number of Monte Carlo sweeps required for obtaining J 200 =11 gl | (I+1)! I—1
the DOS with several methods have been measured and com- Ix (x)=g(=hH+ 11 g(—=1=1)x
pared. It has been demonstrated that the number of Monte

Carlo sweeps required for obtaining the DOS in the methods (I1+2)! 5
without the Wang-Landau acceleration is proportionaito + Tg —1=2)x

whereas in the present meth@ddJKWL) it is proportional to
N!. The new method is also compared with Wang and Lan- |

dau’s original method based on SWL. The result shows that iZ(X):|!Q(|)+(I ! Q(+1)(x—1)
the spin configuration is much more efficiently updated in a'x 11
MJIKWL than in the SWL. |

The proposed maodification to the Janke-Kappler algo- + (1+2)! QU +2)(x—1)%+- - - (A1)
rithm turns out to be useful in reducing the CPU time re- 2! '
quirement, though not as vital as the Wang and Landau’s idea
in the cases shown in the present paper. By comparing these two equations after taking the lifit

We have also deduced an exact relation between the DOS *, (Xx—1), we arrive at the relation di(l) andg(l):
as a function of the energy and that as a function of the bond (1+1)! (1+2)!
number for theQ-state Potts model in any dimensions. _ : :

The present method can be easily extended to other mod- QO =9(=D+ 7o~ 1=D+ 77rg(=1-2)
els with discrete degrees of freedom, in particular, when the
cluster algorithm has been already devised. Quantum spin T
models can also be dealt with in the present scheme. In a
loop-cluster algorithm[18], the partition function is ex- ©F
pressed as a sum of classi¢abnquantumweight over spin

; ; Np—np 4
configurations and graphs. The graph degrees of freedom can _ Mo o
be divided into a continuous pafthe locations of the graph Qny) ,Zo j 9(=Mp=j)  (0=np=Np).
elements in the imaginary time axiand a discrete paftthe (A2)

number and the types of the graph elemgnithe present
scheme can be applicable to the latter discrete part of grapBy settingx=0 in Eq. (A1), we obtain
degrees of freedom. The work in this direction is now under

progress and will be reported elsewh§té)]. dN+E

[ —E+]j _
g(E)= ;0 (—1)! j Q(—E+j) (—Np<E<0).
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APPENDIX A: RELATIONSHIP BETWEEN TWO mates ofQ)(n,) contain statistical error, because the ¥)!
DENSITIES OF STATES factor in Eq.(A3) magnifies the relative magnitude of the
errors.

We derive the exact relationship betwegtE) and

Q(ny). We first define a parameteras Using Eq.(A3), we can obtain, for example, the expres-

sion for the ground state entropy,

x=exp(1/T). eSo=g(—Np)=Q(Np).

Using thisx, we can express the partition function as It should be remarked that the direct outcome of the actual

0 simulation is notQ)(n,) itself but the relative magnitude of
Z(x)= 2 g(E)xE. Q(np)’s. Therefore, in order to obtain an estimate(bfNp),
ES—Np we have to use the fact that
In terms of the number of bonds, it is written as Q(0)=QN
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for the Q-state Potts model. With this equation, the absolute V(ny,+1)
magnitude of(2(n,) can be determined. In other words, if V(ng) +V(ng+1)"
fl(Np) is the direct outcome of the simulation and, there-

fore, proportional ta2(Np), the entropy is given by

_ If the pair is not satisfied, we leave it unconnected. We repeat
_ Q(Np) this procedure many times so that every nearest neighbor

e% ﬁ(O) . pair is chosen and examined once on the average. After these
repetitions, we “flip” all the clusters of sites with probability
one-half.

APPENDIX B: THE JANKE-KAPPLER ALGORITHM If V(ny) is simply written a®)" with some constant, as

is the case with the original weight,, the decisions of plac-

Here, our implementation of the Janke-Kappler algorithm > at
[12] is described. For a given spin configuration and a graphind Ponds can be made for each nearest neighbor pair inde-

we start with making a random choice of a nearest neighbo’?e”de”tly- In such a case, the_resulting algorithm is nothing
pair of sites. With some probability, we remove the bond ifPut the Swendsen-Wang algorithih0]. However, since the

there is one already on the chosen pair, whereas we place®dCPtively chosenv(ny) is not in general factorized, the
new bond if there is no bond on the pair and if the pair isdecisions are dependent. Thereforez in the o_rlgmal Ja_nke-
satisfied, again probabilistically. We say a paij) is satis- Kappler method only one nearest neighbor pair is examined

fied if oy=0;. In either case, the probability for updating is at a .time. For this reason the graph in the Janke-KappIer
of the heat-bath type: algorithm can change only gradually. In general, this is a

disadvantage because there may be some unfavorable region

W(S,G’) or a “barrier” in the bond-number space, which hinders the
P(G'|S,G)= : — random walker from moving from one side of it to the other.
W(S,G)+W(S,G') This disadvantage can be removed by the modification pro-

posed in the main text, in which the random walker can jump
from one side to the other in one step without hitting the
barrier.

W(S,G)=V(G)A(S,G), In practical applications, we perform some number of

sweeps to obtain a histogramf, H(n,). Then, we adjust

whereV(G) is the trial weight that is adoptively adjusted. To V(ny) by
be more specific, if there is a bond already on the chosen
pair, we remove it with probability

whereG’ is the graph in the proposed final stafé(S,G) is
defined as

V(nb)CV(nb)/H(nb).
V(n,—1)

V(n)+V(n,—1)°

With this new weight, we redo the simulation. The whole
If there is no bond and if the pair is satisfied, we place a newprocedure is repeated unti(n,) becomes sufficientlyn,
bond to the pair with probability independent.
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