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Combination of improved multibondic method and the Wang-Landau method
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We propose a method for Monte Carlo simulation of statistical physical models with discretized energy. The
method is based on several ideas including the cluster algorithm, the multicanonical Monte Carlo method and
its acceleration proposed recently by Wang and Landau. As in the multibondic ensemble method proposed by
Janke and Kappler, the present algorithm performs a random walk in the space of the bond population to yield
the state density as a function of the bond number. A test on the Ising model shows that the number of Monte
Carlo sweeps required of the present method for obtaining the density of state with a given accuracy is
proportional to the system size, whereas it is proportional to the system size squared for other conventional
methods. In addition, the method shows a better performance than the original Wang-Landau method in
measurement of physical quantities.
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I. INTRODUCTION

The Monte Carlo simulation is one of the most power
tools for investigating models in statistical physics@1#. Al-
though the Metropolis method@2# and its variations are
available for simulating variety of models, they are not ne
essarily the best methods when the system of interest h
strong long-ranged correlation. Essentially two approac
have been proposed for overcoming the drawbacks of s
local-updating methods. In one approach, one uses an
semble entirely different from the ordinary canonical e
semble with a fixed temperature, whereas in the other
proach one extends the original ensemble by introduc
auxiliary variables.

The multicanonical method@3–5#, the broad histogram
method@6#, and the flat histogram method@7# belong to the
first category. In these methods a random walk in the ene
space is performed to calculate the state density as a fun
of the energy. The multicanonical method was applied to
Q-state Potts model, for example, and turned out very s
cessful @3#. Meanwhile, it was realized that the rando
walker tends to be blocked by the edge of the already vis
area. In addition, because of the general feature of ran
walks, it takes a long time to go from one end of the area
the other. Recently, Wang and Landau@8# succeeded in re
moving these problems by penalizing moving to and stay
at the energy that has been visited many times. The
ciency of the Wang-Landau~WL! method was also demon
strated in an application to antiferromagneticQ-state Potts
model on a simple cubic lattice@9#. In particular, the method
turned out to be powerful in studying the ground state pr
erties due to the fast diffusion accelerated by the W
method.

The second category includes various cluster algorith
In cluster algorithms, graph degrees of freedom are in
duced to extend the original ensemble. In most of their s
cessful applications, clusters of the size of correlation len
@10,11# are formed and flipped. A cluster algorithm is appli
to Q-state Potts model and has proven to be much m
efficient @10# than local-updating algorithms.

Janke and Kappler@12# proposed the multibondic method
1063-651X/2002/65~5!/056710~7!/$20.00 65 0567
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the combination of the multicanonical method and the clus
algorithm. They took the two-dimensionalQ-state Potts
model as an example. They measured the computational
required for the random walker to traverse the interval
tween the two peaks in the canonical probability distributio
The traverse time in units of Monte Carlo sweeps was fou
to be proportional to the number of spinsN1, whereas it is
proportional toN1.3 for the ordinary multicanonical method
where N is the total number of spins in the system. T
multicanonical cluster algorithm@13# shows the same siz
dependence as the Janke-Kappler algorithm~referred to as
‘‘JK’’ in the present paper!. The comparison between th
Janke-Kappler algorithm and this algorithm can be found
Ref. @12#.

In this paper, we propose a method based on the
method ~or, more generally, the multibondic ensemb
method! and the Wang-Landau acceleration method. In S
II, we briefly review the multibondic ensemble method.
Sec. III, we propose a modification of the Janke-Kapp
method ~MJK! to avoid the possible lasting effect of th
initial graph. Then, in Sec. IV, a combination of the MJ
with the Wang-Landau method is discussed. We refer to
combined method as MJKWL. In Sec. V, we demonstrate
efficiency of the MJKWL by comparing it with other meth
ods. In particular, it is shown that the MJKWL is better th
each of its ingredients, i.e., the JK method and the W
method. In Appendix A, we present a simple and exact re
tionship between the density of state~DOS! as a function of
the energy and the DOS as a function of the bond number
the Q-state Potts model in any dimensions.

Since we are forced to use many abbreviations in
present paper to refer to various methods, it may be con
nient to summarize all of them here:

~1! JK—The Janke-Kappler method.
~2! WL—The Wang-Landau method.
~3! SWL—The Wang-Landau method with single spin u

date, i.e., the original Wang-Landau method.
~4! MJK—The modified Janke-Kappler method.
~5! MJKWL—The modified Janke-Kappler method wit

the Wang-Landau acceleration method.
©2002 The American Physical Society10-1
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II. THE MULTIBONDIC ENSEMBLE METHOD

Since our method can be viewed as a derivative of
Janke-Kappler algorithm, we give a brief review of th
multibondic ensemble method. In the following, we take t
Q-state Potts model as an example to make our descrip
concrete. However, the generalization to other models w
discrete energy is straightforward, and we try to describe
method so that the generalization appears obvious.

The Hamiltonian is given by

H52J(̂
i j &

ds i ,s j
, s i5$1, . . . ,Q%,

whereJ is the exchange coupling constant and^ i j & denotes a
nearest neighbor pair. In what follows, we takeJ as the unit
of the energy, andJ/KB as the unit of temperature, wherekB
is Boltzmann’s constant. We first represent the partition fu
tion as a double summation over statesS and graphsG, fol-
lowing the general framework of the dual algorithm@15,16#;

Z~T!5(
S

W0~S!5(
S,G

W0~S,G![(
S,G

V0~G!D~S,G!.

~1!

This is nothing but the well-known Fortuin-Kasteleyn repr
sentation @17#. W0(S) is the weight of stateS, whereas
D(S,G) is a function that takes the value of 1 whenS is
compatible toG and takes the value 0 otherwise.V0(G)
denotes the weight for graphG defined as

V0~G!5V0„nb~G!,T…[~e1/T21!nb(G),

wherenb(G) is the number of bonds inG, in the case of the
Q-state Potts model. Although the only graph elements
bonds in this case, a graph consists of more than one typ
elements in general applications. Therefore, in more gen
terms,nb(G) is a p-dimensional vector variable whosei th
element is the number of graph elements of thei th kind
contained in the graphG. By taking the summation overS
and G, fixing the fixed number of the bond, the above e
pression for the partition function is reduced to

Z~T!5 (
nb50

NP

V~nb!V0~nb ,T!, ~2!

whereNP is the total number of nearest neighbor pairs in
whole system (NP5dN5dLd for d-dimensional hypercubic
lattices!. Here,V(nb) is the DOS of the bond number de
fined as the number of consistent combinations of graphs
states such that the graph consists ofnb bonds;

V~nb![ (
$Gunb(G)5nb%

(
S

D~S,G!.

In the multibondic ensemble method, we repla
V0(nb ,T) by a free function that we denote byV(nb). By
adjusting this function, we try to make the histogram flat a
function ofnb . In other words,V(nb) is adjusted so that the
product of V(nb) and V(nb) may be independent ofnb .
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Since initially V(nb) is unknown, we achieve this adap
tively. The way how we modify the trial weight is describe
in the following sections.

There are several different ways for adjusting the tr
weight. The original JK method is one of them. The detai
description of the JK method can be found in Appendix
and in the original paper@12#.

III. MODIFICATION OF THE JANKE-KAPPLER
ALGORITHM

As stated in Appendix B, in the original JK algorithm th
initial graph for each Monte Carlo sweep may have a lo
lasting effect upon the subsequent states during the sw
since the bond update is done only sequentially. In this s
tion, we propose a modification of the Janke-Kappler alg
rithm ~MJK! to reduce the possible lasting effect of the initi
graph as much as possible.

We first choose any consistent combination of a state
a graph as the initial condition. For the initial choice
V(nb), we chooseV(nb)51 for anynb .

In each Monte Carlo sweep of the MJK, we choose
number of the bonds to be placed on the whole system be
actually placing them. The numbernb is chosen with the
following probability,

P@nbunp~S!#}S np~S!

nb
DV~nb!.

Here,np(S) is the number of ‘‘satisfied’’ pairs in the curren
stateS, i.e.,

np~S!5(̂
i j &

ds i (S),s j ~S!

and

S l

mD[
l !

m! ~ l 2m!!
.

Note that the choice ofnb is based only on the information o
the current stateS at the beginning of the sweep. As for th
graphG at the beginning of the sweep, we simply delete
the bonds in it. We then choosenb pairs at random out of
np(S) satisfied ones and place new bonds on them. It is c
that there is no direct influence of the initial graph on t
final graph. The correlation between them arises o
through the state that should be compatible to the ini
graph. After the placement of thenb bonds, we ‘‘flip’’ all the
clusters of sites with probability one-half where flipping
cluster means changing all the variables on it simultaneou
This completes one Monte Carlo ‘‘sweep.’’ It is easy to sho
that this procedure satisfies the extended detailed bala
condition @16#:

P~GuS!W~S!5P~SuG!W~G!,

whereW(G)[(SW(S,G) andW(S,G)[V(G)D(S,G).
0-2
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COMBINATION OF IMPROVED MULTIBONDIC METHOD . . . PHYSICAL REVIEW E65 056710
Another modification should be done in order to make
MJK method better than the original JK method. In the
method, the histogramH(nb) is updated by the simple rule

H~nb!⇐H~nb!1d @nb ,nb~G!#, ~3!

every time a part of graph, i.e., a bond on a pair of sites
updated. It means that we updateH(nb) in a sweep as many
times as the number of bonds. Although the successive
ues ofnb in the same sweep are strongly correlated with e
other in the JK algorithm, one can still get statistically mo
informative data by taking all of them into account. It
roughly equivalent to adding some smooth function toH(nb)
at every Monte Carlo sweep, in contrast to adding ad func-
tion.

However, in the MJK method,H(nb) is updated only
once in every Monte Carlo sweep, which means that a d
function is added toH(nb) at each sweep according to th
the updating rule~3!. In order to remove this disadvantag
in the MJKWL method, we add to the histogram the exp
tation values of thed function d @nb ,ng(S)#, rather than the
d function itself. The resulting updating rule forH(nb) is

H~nb!⇐H~nb!1NPP@nbunp~S!#.

Although including a constantNP is not relevant, it is added
in order to make the magnitude of the histogram compara
to the one in the JK method.

IV. COMBINING WITH THE WANG-LANDAU METHOD

It has been known since the first proposal of the multi
nonical method that the random walker tends to be stuc
the boundary that separates the region visited already f
the one not visited yet. This difficulty has been removed
the recent technique proposed by Wang and Landau@8#.
Their method seems to be useful also in accelerating
diffusion of the random walker.

In the WL method, the DOS phase~see the following
section! of the computation consists of varying number
consecutive sets of simulation, as is also the case with
ordinary multicanonical method and its derivatives. Ho
ever, the important difference lies in the way the trial weig
is updated. In the conventional multicanonical methods,
trial weight is updated only at the end of each set of simu
tions. During each set, the trial weight and, consequently,
transition probability are fixed. In the WL method, on th
other hand, every time the state of the system is renewed
trial weight W(E) is updated as

ln W~E!⇐ ln W~E!2ld @E,E~S!# ~l.0!,

whereE(S) is the energy of the current state. The positi
parameterl is introduced to control the magnitude of th
expelling force imposed on the random walker. If the para
eter is large, the random walker quickly moves out of t
region that it has already visited. In other words, the his
gram is forced to be flat by this parameter. However, the v
presence of this force breaks the detailed balance and, th
fore, makes the resulting trial weight differ from the corre
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one, i.e., the inverse of the DOS. On the other hand, if i
small, the resulting trial weight is reliable while the conve
gence tends to be slow. Therefore, the general strategy
set this value large initially and make it smaller as the tr
weight approaches the correct one.

The valuel is kept constant throughout each set of sim
lation and is reduced by some factor at the beginning of
next set of simulation. Wang and Landau suggested 1/2
the reduction factor. Each set of simulation terminates wh
the histogram of the set satisfies some predetermined co
tion concerning its flatness. The histogram is reset at
beginning of a new set while the trial weightW(E) is not.
The whole calculation is terminated whenl becomes smaller
than a predetermined value.

In order to combine the WL method with the MJK metho
described in the preceding section, we may simply repl
the energy space in the original WL method by the bon
number space. To be more specific,H(E) is replaced by
H(nb), W(E) by V(nb), andd @E,E(S)# by d @nb ,nb(G)#.
However, as for the updating rule ofV(nb),

ln V~nb!⇐ ln V~nb!2lNPP@nbunp~S!#

is the better choice than

ln V~nb!⇐ ln V~nb!2ld @nb ,nb~G!#

for the same reason as we stated in the preceding sec
We, therefore, use the former updating rule in the MJKW
method for the sample calculation presented below.

V. EFFICIENCY OF THE METHOD

We now discuss the performance of the above-mentio
methods. Since the present method~MJKWL! is the combi-
nation of MJK and WL, it should be demonstrated that th
combination is meaningful, i.e., MJKWL is qualitatively be
ter than both of the two ingredients.

First, it should be noted that there are several measure
performance. In the WL method, such as MJKWL and sin
spin updated Wang-Landau method~SWL!, the whole com-
putation process consists of two phases; the DOS phase
the measurement phase. In the DOS phase, the comput
is performed mainly for obtaining an estimate of the DO
During this phase, several sets of simulation are done for
adoptive adjustment of the fictitious weight@the trial weight
V(nB) in Sec. II for the multibondic methods such as J
MJK, and MJKWL and the trial weightW(E) in Sec. IV for
the SWL#. At the end of this phase, some of the physic
quantities, such as the entropy, the energy, and the spe
heat, can be computed with the resulting DOS. For ot
quantities, however, some additional simulation should
performed with a fixed trial weight and with the controllin
parameterl set to zero. We call this part the measureme
phase.~In the case where the value ofl for the last set of
simulation in the DOS phase is negligibly small, a separ
measurement phase may not be necessary. In such case
regard the last set as the measurement phase.! In what fol-
lows, we discuss the computational time required for
DOS phase and that for the measurement phase, separ
0-3
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CHIAKI YAMAGUCHI AND NAOKI KAWASHIMA PHYSICAL REVIEW E 65 056710
As we see below, the DOS is obtained much faster in
DOS phase of MJKWL than in JK and MJK, while SW
shows qualitatively the same performance as MJKWL. T
difference between MJKWL and SWL can be seen in
measurement phase. Namely, MJKWL yields much be
statistics in the measurement phase than SWL within
same number of Monte Carlo sweeps.

A remark should be placed here concerning the source
errors in the two phases. During the DOS phase, the sys
atic error as well as the statistical error is present. The s
tematic error is due to the obvious fact that there may b
region that the random walker has not visited yet. In
methods based on the Wang-Landau acceleration, the
that the controlling parameterl is not zero in another sourc
of systematic error. Because of this systematic error, the
pendence of the total error on the duration of the simulat
is complicated. On the other hand, in the measurement p
there are no other sources of errors than the ordinary st
tical ones. Therefore, the precision of the result in this ph
is proportional to the inverse of the square root of the nu
ber of Monte Carlo sweeps.

In what follows, we argue and demonstrate that the me
ods without the Wang-Landau acceleration, such as JK
MJK, require the number of Monte Carlo sweeps of the or
O(N2) whereas the methods with the Wang-Landau ac
eration, such as MJKWL and SWL requireO(N) to achieve
the same accuracy in the DOS.

In all the methods discussed here we start with somead
hoc initial guess for the DOS. Then, the resulting histogra
has a rather narrow range of distribution. Therefore, in or
to make the histogram flat throughout the whole energy~or
bond number! range, we have to repeat simulations. Eve
time we start a new set of simulation, we improve the init
guess for the density of states based upon the outcome o
last set of simulation. The difficulty arises near the bound
between the two regions; the region that has been vis
already in the previous simulations and the region that
not. When the random walker in the energy~or the bond
number! space hits the boundary during the simulation,
usually bounces back and, even if it does not, it seldom g
far beyond the boundary. Therefore, the width of the visi
region increases by only a few steps as a result of the w
set. It follows that the number of sets of simulation requir
for making the histogram flat is proportional to the width
the energy~or bond number! space, that is,O(N). In addi-
tion, each set must be long enough for the walker to trave
the whole previously visited region. Since the width of t
previously visited region is of the orderO(N) in general and
the typical distance the walker traverses in a single Mo
Carlo sweep isO(N1/2), the number of Monte Carlo sweep
required for the walker to traverse the region
O@(N/N1/2)2#5O(N). These factors are multiplied to mak
the total number of sweeps required for the whole D
phase of the orderO(N2).

In contrast, in methods with Wang and Landau’s accele
tion, the situation described above cannot happen. Thi
because the current histogram affects the current weights
transition probabilities, such that the weights for the f
quently visited positions become smaller. This forces
05671
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walker to move out of the already visited region and ma
histogram flat. Since this situation is similar to the on
dimensional self-avoiding walk, a natural guess is that
number of steps~i.e., the number of local updatings! required
for the walker to traverse the already visited region is p
portional to the size of the region, which isO(N). In units of
sweeps, it isO(N0).

To check if this simple argument is correct, we perform
simulations for ferromagnetic Ising model on a square latt
using three different methods: MJKWL, MJK, and JK. F
these three methods, we set an initial weightV(nb)51 for
all nb . We measured the number of Monte Carlo swee
required for obtaining the DOS with a roughly fixed prec
sion, as a function of system sizeN[L2. It should be re-
marked here that we cannot rigidly fix the target precision
the DOS because the termination condition in MJKWL
defined in terms of the flatness of the histogram and
value of the controlling parameterl, not the number of
Monte Carlo sweeps nor the precision of the DOS. The
fore, we performed a MJKWL simulation first with som
reasonable choice of the termination condition. Then,
performed simulations using JK and MJK. The current e
mate of the DOS is updated frequently in these simulati
so that the simulation can be terminated as soon as the
cision of the DOS estimate reaches the same as that obta
in the MJKWL simulation. The precision of the DOS is me
sured by the following quantity:

e~L ![
1

NP11 (
nb50

NP

u ln V~nb!2 ln V (exact)~nb!u.

The exact DOSV (exact) is obtained through Eq.~A2! as a
function of the energy@14#. In what follows, the termination
condition for the MJKWL is the same for all the syste
sizes. It turned out that the resulting signal-noise ratio of
DOS, e(L), is roughly independent of the system size.

Our procedure for the MJKWL simulation is as follow
The reduction factorl is divided by 2 when each set o
simulation is terminated. Each set is terminated when
smallestH(nb) becomes greater than 0.8 times the avera
value ofH(nb). The whole calculation is terminated whenl
becomes less than 1028. This procedure is essentially th
same as suggested in the original paper by Wang and Lan
@7# except that we work with the DOS as a function ofnb
rather thanE.

For MJK and JK, we perform a number of subsequent s
of simulations to improve the estimates of the DOS. We s
with a relatively short set and gradually make it longer. T
way we increase the number of sweeps of a set depends
whether the random walker has already visited the wh
bond-number space. Ifnb has not visited the wholenb space
at the end of thei th set, the number of sweeps for thei
11)th set is chosen as

t i 11510~mi1ANP!,

wheremi is the number of the already visited values ofnb in
the i th set. If the above argument is correct, i.e., the rand
walker moves in the bond-number space as a self-avoid
0-4
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COMBINATION OF IMPROVED MULTIBONDIC METHOD . . . PHYSICAL REVIEW E65 056710
walker, this choice oft i 11 should give the walker an enoug
time to traverse the whole region of previously visited valu
of nb and touch the boundary a few times. Therefore
should be enough to expand the visited region. Ifnb has
already visited the wholenb space at the end of thei th set,
the number of sweeps for the (i 11)th set is given by

t i 1152t i .

This choice will provide the walker with enough time
develop appreciably better trial weights than the previo
sets. The whole procedure yields the total number of swe
of the orderO(N2) if the above argument is correct. Th
entire process is terminated when the estimatedV(nb) has
become as good as that obtained with the MJKWL.

The computation is done for system sizesL54, 8, 16, 24,
and 32 as all other sample calculations presented below.
results are shown in Fig. 1. The average is taken over a
30 independent simulations. We can easily see that MJK
is the best method among the three multibondic methods
largerN. It can be also seen that the MJK is better than
JK. Two lines are drawn in Fig. 1 for references. The low
dashed line corresponds tot}O(N1) whereas the uppe
dashed line tot}O(N2) We can see that the MJKWL re
quires O(N1) sweeps while the MJK and the JK requi
O(N2) sweeps, as expected from the argument. We have
confirmed that the relative statistical error in the DOS o
tained by MJKWL does not strongly depend on the syst
size.

The performance of SWL, i.e., Wang and Landau’s ori
nal method using single spin flips, is also examined. We
the initial weightW(E)51 for all E. We measured the tota
number of Monte Carlo sweeps as a function of the sys
size. Again the precision of the resulting estimate of the D
does not strongly depend on the system size. The resu
shown in Fig. 2. We can see that the SWL requireO(N1)
sweeps for large systems. Therefore, it can be concluded
the SWL has the same qualitative performance as
MJKWL in the DOS phase.

FIG. 1. The total number of Monte Carlo sweeps performed
obtain the same accuracy in the DOS estimate, as a function o
system sizeN[L2 for ferromagnetic Ising model on a square la
tice. Three methods are examined; the modified Janke-Kapple
gorithm with the Wang-Landau method~MJKWL!, the modified
Janke-Kappler algorithm~MJK!, and the ordinary Janke-Kapple
algorithm~JK!. The average is taken over 30 independent runs.
upper and lower lines are for references, corresponding tt
}O(N2) and t}O(N1), respectively.
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To compare the efficiency of MJKWL and SWL in th
measurement phase, we calculate the squared magnetiz
M2 divided byN2 for ferromagnetic Ising model on a squa
lattice. We first estimate the DOS in the DOS phase. Us
this DOS, we then perform 50 independent runs for the m
surement phase using different random number sequenc
each run. Each run consists of 100N sweeps, and produce
a histogram and a set of microcanonical averages
the squared magnetization, as is usually done in
multicanonical-type method. Based on this information,
canonical average of the squared magnetization at the cri
temperature is computed for each run. Then, we compute
standard deviation of these 50 canonical averages. This s
dard deviation is proportional to the statistical error in t
final estimate and can be used as a measure of the effici
with which the spin configuration is updated during t
simulation.

The result is shown in Fig. 3. As is clear from the figur
MJKWL is better than SWL. The difference in the standa
deviation tends to increase as the system becomes la
This is because the spin configuration is updated by clus
in MJKWL whereas it is updated by single spins in SW
Therefore, the configuration is decorrelated much faste
MJKWL than in SWL. To be more specific, a random walk
in SWL must visit states with very different values of ener
in order to visit a state with very different value of the ma

o
he

al-

e

FIG. 2. The total number of Monte Carlo sweeps as a funct
of the system sizeN[L2 for ferromagnetic Ising model on a squa
lattice. The calculation is performed following Wang and Landa
original procedure. The average is taken over ten independent
The upper and lower lines are for references, correspondingt
}O(N2) and t}O(N1), respectively.

FIG. 3. The standard deviation of 50 independent estimate
the squared magnetization per unit spin thermally averaged a
critical temperatureTC52/ln(11A2) for the ferromagnetic Ising
model on a square lattice. For each run, 100N sweeps are per-
formed.
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netization, whereas a random walker in MJKWL does n
have to because the state can change even without chan
the bond number at all.

VI. SUMMARY

We have proposed a combination of the Janke-Kap
algorithm with the Wang-Landau acceleration method,
gether with a modification of the Janke-Kappler algorith
The number of Monte Carlo sweeps required for obtain
the DOS with several methods have been measured and
pared. It has been demonstrated that the number of M
Carlo sweeps required for obtaining the DOS in the meth
without the Wang-Landau acceleration is proportional toN2,
whereas in the present method~MJKWL! it is proportional to
N1. The new method is also compared with Wang and L
dau’s original method based on SWL. The result shows
the spin configuration is much more efficiently updated
MJKWL than in the SWL.

The proposed modification to the Janke-Kappler al
rithm turns out to be useful in reducing the CPU time
quirement, though not as vital as the Wang and Landau’s
in the cases shown in the present paper.

We have also deduced an exact relation between the D
as a function of the energy and that as a function of the b
number for theQ-state Potts model in any dimensions.

The present method can be easily extended to other m
els with discrete degrees of freedom, in particular, when
cluster algorithm has been already devised. Quantum
models can also be dealt with in the present scheme.
loop-cluster algorithm@18#, the partition function is ex-
pressed as a sum of classical~nonquantum! weight over spin
configurations and graphs. The graph degrees of freedom
be divided into a continuous part~the locations of the graph
elements in the imaginary time axis! and a discrete part~the
number and the types of the graph elements!. The present
scheme can be applicable to the latter discrete part of g
degrees of freedom. The work in this direction is now und
progress and will be reported elsewhere@19#.
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APPENDIX A: RELATIONSHIP BETWEEN TWO
DENSITIES OF STATES

We derive the exact relationship betweeng(E) and
V(nb). We first define a parameterx as

x[exp~1/T!.

Using thisx, we can express the partition function as

Z~x!5 (
E52NP

0

g~E!x2E.

In terms of the number of bonds, it is written as
05671
t
ing

r
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g
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-
-
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d

d-
e
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a

Z~x!5 (
nb50

NP

V~nb!~x21!nb.

The range of the energy is2NP<E<0 and that of the num-
ber of bonds is 0<nb<NP , whereNP is the total number of
nearest neighbor pairs of spins. Differentiating the above
equationsl times with respect tox, we obtain

] l

] lx
Z~x!5 l !g~2 l !1

~ l 11!!

1!
g~2 l 21!x

1
~ l 12!!

2!
g~2 l 22!x21•••,

] l

] lx
Z~x!5 l !V~ l !1

~ l 11!!

1!
V~ l 11!~x21!

1
~ l 12!!

2!
V~ l 12!~x21!21•••. ~A1!

By comparing these two equations after taking the limitT
→`, (x→1), we arrive at the relation ofV( l ) andg( l ):

V~ l !5g~2 l !1
~ l 11!!

l !1!
g~2 l 21!1

~ l 12!!

l !2!
g~2 l 22!

1•••,

or

V~nb!5 (
j 50

NP2nb S nb1 j

j D g~2nb2 j ! ~0<nb<NP!.

~A2!

By settingx50 in Eq. ~A1!, we obtain

g~E!5 (
j 50

dN1E

~21! j S 2E1 j

j DV~2E1 j ! ~2NP<E<0!.

~A3!

Equation~A2! is useful for obtainingV(nb) from g(E), such
as those obtained by Beale@14#. However, computingg(E)
from V(nb) using Eq.~A3! is not practical when the esti
mates ofV(nb) contain statistical error, because the (21) j

factor in Eq. ~A3! magnifies the relative magnitude of th
errors.

Using Eq.~A3!, we can obtain, for example, the expre
sion for the ground state entropy,

eS0[g~2NP!5V~NP!.

It should be remarked that the direct outcome of the ac
simulation is notV(nb) itself but the relative magnitude o
V(nb)’s. Therefore, in order to obtain an estimate ofV(NP),
we have to use the fact that

V~0!5QN
0-6



ut
if

re

m
p
b
i

c
is

is

o
se

e

eat
bor

hese

nde-
ing

ke-
ned
pler

a
gion

he
r.
ro-

mp
he

of

le

COMBINATION OF IMPROVED MULTIBONDIC METHOD . . . PHYSICAL REVIEW E65 056710
for the Q-state Potts model. With this equation, the absol
magnitude ofV(nb) can be determined. In other words,

Ṽ(NP) is the direct outcome of the simulation and, the
fore, proportional toV(NP), the entropy is given by

eS05
Ṽ~NP!

Ṽ~0!
QN.

APPENDIX B: THE JANKE-KAPPLER ALGORITHM

Here, our implementation of the Janke-Kappler algorith
@12# is described. For a given spin configuration and a gra
we start with making a random choice of a nearest neigh
pair of sites. With some probability, we remove the bond
there is one already on the chosen pair, whereas we pla
new bond if there is no bond on the pair and if the pair
satisfied, again probabilistically. We say a pair (i , j ) is satis-
fied if s i5s j . In either case, the probability for updating
of the heat-bath type;

P~G8uS,G![
W~S,G8!

W~S,G!1W~S,G8!
,

whereG8 is the graph in the proposed final state.W(S,G) is
defined as

W~S,G![V~G!D~S,G!,

whereV(G) is the trial weight that is adoptively adjusted. T
be more specific, if there is a bond already on the cho
pair, we remove it with probability

V~nb21!

V~nb!1V~nb21!
.

If there is no bond and if the pair is satisfied, we place a n
bond to the pair with probability
E.

. J

05671
e

-

h,
or
f
e a

n

w

V~nb11!

V~nb!1V~nb11!
.

If the pair is not satisfied, we leave it unconnected. We rep
this procedure many times so that every nearest neigh
pair is chosen and examined once on the average. After t
repetitions, we ‘‘flip’’ all the clusters of sites with probability
one-half.

If V(nb) is simply written asvnb with some constantv, as
is the case with the original weightV0, the decisions of plac-
ing bonds can be made for each nearest neighbor pair i
pendently. In such a case, the resulting algorithm is noth
but the Swendsen-Wang algorithm@10#. However, since the
adoptively chosenV(nb) is not in general factorized, the
decisions are dependent. Therefore, in the original Jan
Kappler method only one nearest neighbor pair is exami
at a time. For this reason the graph in the Janke-Kap
algorithm can change only gradually. In general, this is
disadvantage because there may be some unfavorable re
or a ‘‘barrier’’ in the bond-number space, which hinders t
random walker from moving from one side of it to the othe
This disadvantage can be removed by the modification p
posed in the main text, in which the random walker can ju
from one side to the other in one step without hitting t
barrier.

In practical applications, we perform some number
sweeps to obtain a histogram ofnb , H(nb). Then, we adjust
V(nb) by

V~nb!⇐V~nb!/H~nb!.

With this new weight, we redo the simulation. The who
procedure is repeated untilH(nb) becomes sufficientlynb
independent.
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